Towards EMIC rational design: setting the molecular simulation toolbox for enantiopure molecularly imprinted catalysts

نویسندگان

  • Tessa Jalink
  • Tom Farrand
  • Carmelo Herdes
چکیده

A critical appraisal of the current strategies for the synthesis of enantiopure drugs is presented, along with a systematic background for the computational design of stereoselective porous polymers. These materials aim to achieve the enantiomeric excess of any chiral drug, avoiding the racemic separation. Particular emphasis is given to link statistical mechanics methods to the description of each one of the experimental stages within the catalyst's synthesis, setting a framework for the fundamental study of the emerging field of molecularly imprinted catalysts.Graphical abstractThe envisaged modelling tools in the EMIC toolbox: quantum mechanics (QM), molecular dynamics and Monte Carlo (in the NPT and NVT ensembles), grand canonical Monte Carlo (GCMC) and kinetic Monte Carlo (kMC), for the synthesis of an enantiopure drug via our proposed EMIC catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

Molecularly Imprinted Polymer (MIP) Applications in Natural Product Studies Based on Medicinal Plant and Secondary Metabolite Analysis

Characterization and extraction of plant secondary metabolites are important in agriculture, pharmaceutical, and food industry. In this regard, the applied analytical methods are mostly costly and time-consuming; therefore, choosing a suitable approach is essential for optimum results and economic suitability. One of the recently considered methods used to characterize new types of materials is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016